
A tool to measure TDD compliance:
a case study with professionals

Altieres de Matos1, Reginaldo Ré2, and Marco Aurélio Graciotto Silva1,2

1 Graduate Program in Informatics (PPGI)
Federal University of Technology – Paraná (UTFPR),

Cornélio Procópio, Paraná, Brazil
2 Department of Computing (DACOM)

Federal University of Technology – Paraná (UTFPR),
Campo Mourão, Paraná, Brazil

altitdb@gmail.com, {reginaldo,magsilva}@utfpr.edu.br

Abstract. Context: There are several studies related to Test Driven
Development (TDD), but many with divergences of results due to the
short time to perform the experiments. Moreover, the environment where
they are carried out is generally academic. On the other hand, the envi-
ronment requires tools not used by practitioners or imposes many tech-
nical and training requirements for their application. Goal: The goal of
this paper is to provide a tool that supports the evaluation of the TDD
process in the software industry and academia settings. The tool focuses
on analyzing the effects of verification, validation and test (VV&T). In
addition, the compliance of TDD usage in software development was
evaluated. Method: This study made use of the Goal Question Met-
ric (GQM) paradigm to characterize a set of objectives using metrics
towards TDD effects on software quality. A case study was conducted
with IT professionals to evaluate the tool developed. Results: Consid-
ering the existing tools that perform TDD compliance assessment, the
Butterfly tool was developed to enable the evaluation of the TDD lifecy-
cle as the developer performs the coding of the software. With this tool
it is possible to analyze the compliance of TDD usage during software
development. Conclusions: The tool allows to measure the effects of
TDD when developing software, which will support in the characteriza-
tion of TDD contributions and interventions applied to software quality
in future works.

Keywords: test driven development · agile software development · tdd
conformance · tdd lifecycle · software measurement

1 Introduction

Test Driven Development (TDD) provides developers with the ability to write
small pieces of software based on software requirements, implementing test cases
before production code [9, 20]. Thus, each piece of code and its respective auto-
matic test is written in a cycle [9]. This style of development enables developers



2 A. de Matos et al.

to stay focused on requirements sets, ensuring that every piece of written pro-
duction code is covered by automated tests [9, 20].

TDD is considered an agile practice related to quality [6, 13]. With the in-
troduction of TDD in eXtreme Programming (XP) and its frequent use in con-
junction with the Scrum agile method [12], TDD has gained popularity [2, 6].
However, despite its adoption in software industry, several aspects regarding
TDD, such as conformance and and software testing activities, are not focused
by the research community [16].

The motivation of this study lies in the fact that the software industry and
academia are not strongly connected and do not have high collaboration between
them [5]. In the software testing domain, one of the main problems is that re-
searchers are not worried about solving problems of the software industry [10].
Several reasons regarding this have been discussed by software engineering re-
searchers, from the difference of objectives between the two parties to challenges
of scalability and applicability of problems [10].

One of the current discussions in the area of software testing is the compul-
sory testing of software in the scope of software development [5, 18]. Another
motivating factor is the increase in the interest of professionals in test automa-
tion [18]. In contrast, there are factors that limit the adoption of TDD in the
software industry: (i) increased development time, (ii) insufficient experience
and knowledge about TDD, (iii) lack of upfront design, (iv) insufficient devel-
oper testing skills, (v) lack of adherence to the TDD protocol, (vi) limitations
regarding TDD implementation related to domain and tools, and (vii) legacy
code [7]. In addition to these factors, it is observed that, currently, the adoption
of agile methods requires that the responsibility for software quality be made
beyond the quality team [8]. If, in agile methods, it is argued that teams have
autonomy and that they are responsible for the software, it is sensible to give
them greater responsibility for software quality, rather than delegating such a
role integrally to a distinct part (such as a quality assurance team).

Although global software development industry and the software research
academy have a large number of members, collaboration between the two is
low [10]. In 2017, the state of the art software testing considered that performing
manual or automatic testing became mandatory for the production of software
products [5]. In this way, adopting TDD makes it possible to go further [20]. TDD
provides the industry the possibility to improve adherence to proper software
testing activities, minimizing the chances of skimping on the implementation of
test cases after writing production code [20].

This study aims to provide a tool to support the evaluation of the TDD pro-
cess in the academia and software industry. A fundamental aspect of the study is
the application in the software industry encompassed in the agile context along
with the use of the iterative model. The tool allows the real-time analysis of cod-
ing performed by developers, classifying their actions regarding editing test cases
and code and, considering such actions, classify the development cycle/iteration
in: (i) test-addition, (ii) test-first, (iii) test-last, (iv) test driven development,
(v) refactoring e (vi) unknown. Thus, conformance to TDD can be evaluated



A tool to measure TDD compliance: a case study with professionals 3

through the classifications and other measurements regarding testing activities,
such as test coverage and quantity of implemented test cases.

Some studies that evaluate TDD usage in the software industry and TDD
conformance are described in Section 2. Considering their findings and the lim-
itations regarding tool support for TDD adoption, the tool, named Butterfly, is
described in Section 3. Afterwards, in Section 4, it was provided details of the
case study used to evaluate the developed tool, describing the results in Section 5
and discussing how the tool can influence the community in Section 6. Conclu-
sions and next steps regarding the investigation on the integration of TDD and
software testing within the industry setting are presented in Section 7.

2 Related work

Test Driven Development (TDD) [3] is an iterative software development tech-
nique [9, 19]. In the TDD process, each new iteration consists of the implemen-
tation of a feature [9]. Three phases make up the TDD process: (i) writing the
unit test, (ii) implementing the production code, and (iii) refactoring [9, 19]. The
iteration begins with writing the unit test, followed by the implementation phase
of the production code, and finalizing itself in the refactoring phase [9, 19]. The
iteration is terminated when all phases of the process are executed and the unit
tests are successfully executed [9]. The main rule of TDD is: “If you can’t write
a test for what you are about to code, then you shouldn’t even be thinking about
coding” [11].

TDD and some of its effects have been extensively studied [9]. Considering
the objective of this study, it was focused on related work regarding TDD confor-
mance, helping developers with the use of TDD and improving software design,
so that it was possible to obtain the best solution for the desired scenario [17].

In the study by Kou et al. [15], the authors presented a tool that allows au-
tomated recognition of TDD. The so called Zorro system allows the operational
definition of TDD practices to be verified. The automated recognition of TDD
can bring several benefits to the community, either to support TDD practices or
to assist in empirical studies on the effectiveness of TDD. The study described
how the analysis can be performed with the Zorro system, in addition to two
empirical assessments. The first controlled experiment aimed to ensure that the
collected and analyzed information was appropriate and effective. In the second
controlled experiment conducted by the authors, they aimed to obtain better
data about the strengths and limitations of Zorro for TDD inference. A third
controlled experiment was conducted in order to address a validity threats. Thus,
the authors did not use students as subjects, as in the two previous controlled
experiments, besides not using the classroom environment. Instead, the authors
run the controlled experiment with professionals of the software industry. The
study fostered the possibility of tool evolution, in order to improve its ability
to recognize TDD processes, in addition to providing information in a clear and
objective way. It also made it possible to evaluate the effects of TDD in the
medium and long term with respect to software quality.



4 A. de Matos et al.

In the study by Becker et al. [4], the authors presented the Besouro tool,
which is an improved version of their previous TDD automatic recognition tools
and studies. The following tools were used: (i) TestFirstGauge, (ii) TDDGuide,
(iii) Zorro and (iv) SEEKE. The authors compared them with other existing
tools and commented on the new features existing in the Besouro, some of them
being built with private (closed-source) components. The Besouro tool shares
several concepts used in the Zorro tool of the study by Kou et al. [15]. To verify
the effectiveness of the tool, the authors performed a controlled experiment that
was defined through the GQM model (goal, question and metrics). Given this
model, the authors defined the following objective: “Analyze the variations of
an operational definition of TDD to evaluate with respect to TDD compliance
criteria from the perspective of the developers in the context of programming
activities”. The authors considered the Besouro tool as a potential system for
conducting quantitative TDD studies.

In the study by Fucci et al. [9], the authors presented an extensive study
on TDD processes. As a goal, the authors sought to find out the impact of the
effects that the TDD process characteristics can have on the external quality
of the software and the productivity of the developers. The authors identified
four characteristics in the TDD process, detailed in Table 1: (i) granularity, (ii)
uniformity, (iii) sequence and (iv) refactoring effort.

Table 1. Characteristics corresponding to TDD processes [9].

Characteristic Definition
(i) Granularity Characterized by a short development process, where

each cycle typically lasts between 5 and 10 minutes.
(ii) Uniformity Characterized by development cycles that last approxi-

mately the same time.
(iii) Sequence Indicates the prevalence of the test-first (TF) sequence

during the development process.
(iv) Refactoring effort Indicates the prevalence of refactoring activity in the de-

velopment process.

The authors conducted a quasi-experiment in the context of the software
industry. For the production of the data, the authors performed four workshops
with themes on unit tests, TDD, TF, TL and iterative process of unit tests.
Each workshop lasted five days. To obtain the data of the development cycles,
the authors used the tool Besouro [4]. The data generated by the tool were used
to calculate metrics that represent the TDD characteristics described in Table 1.
Within their study, it was possible to conclude that the benefits of TDD are not
only provided by the dynamics of test first (TF). TDD as a process encourages
developers to follow fine and steady steps by improving the focus and flow of
development [9].

Even with a number of tools designed to recognize the TDD lifecycle pro-
cesses, no completely open source tools for this purpose in the community was



A tool to measure TDD compliance: a case study with professionals 5

found. There is also the need for effective analysis and summarization of data
generated by the tools. Building an open-source tool free of private components
is a differential against existing tools in the community, providing an increase in
the maintainability and easing the evolution of the tool.

3 Butterfly Tool

To develop the Butterfly tool it was necessary to evolve heuristics used to
classify the actions performed by developers during the development cycle. The
heuristics were based on those presented by Fucci et al. [9] and Kou et al. [15].

3.1 Actions

To define each heuristic, it was necessary to classify the actions that are often
executed by developers. In Table 2 each action and its respective interpretation
are presented. Five essential actions were considered to produce the necessary
heuristics to classify each scenario used in the software development cycle. The
Test Creation action comprises creating an automated test case, either before or
after writing the production code. The Test Pass action refers to the execution
of one or more automated test cases successfully. The Test Failure action, con-
trary to the Test Pass action, is related to the execution of one or more failed
automated test cases. The Test Editing action covers the inclusion, change, or
removal of source code from existing automated test cases. The Code Editing
action, similarly to the Test Editing action, corresponds to the inclusion, modi-
fication, and removal of production source code.

Table 2. Development lifecycle actions.

Action Definition
Test Creation Characterized by the creation of automatic test cases.
Test Pass Characterized by the execution of test cases that result

in success.
Test Failure Characterized by running test cases that result in failure.
Test Editing Characterized by adding, changing or removing code

from test cases.
Code Editing Characterized by adding, changing or removing produc-

tion source code.

3.2 Categories

For the development of the Butterfly tool, the heuristics underwent changes, as
presented in Table 3. To define the heuristics it was necessary to evaluate in
detail the life cycle of each development. The new heuristic model consists of 6



6 A. de Matos et al.

categories and 16 types of episodes. For this new model, the Production category
was removed and a new category was added, called Test Driven Development. In
this new category you can evaluate the entire red-green-refactoring life cycle of
TDD. Like the other tools, Butterfly also considers the end of the development
cycle as the Test Pass action. The tool includes the following categories: Test
Addition (TA), Test-first (TF), Test-last (TL), Refactoring (RF), Test Driven
Development (TDD) and Unknown (UK).

Table 3. Heuristics used to infer the classification of the development cycle.

Type Definition

Test Addition
TA1. Test Creation → Test Pass
TA2. Test Creation → Test Failure → Test Editing → Test Pass

Test-first

TF1. Test Creation → Code Editing → Test Pass
TF2. Test Creation → Test Failure → Code Editing → Test Pass
TF3. Test Creation → Code Editing → Test Failure → Code Editing
→ Test Pass

Test-last
TL1. Code Editing → Test Creation → Test Pass
TL2. Code Editing→ Test Creation→ Test Failure→ Test Editing→
Test Pass

Refactoring

RF1. Code Editing → Test Pass
RF2. Code Editing → Test Failure → Code Editing → Test Pass
RF3. Test Editing → Test Pass
RF4. Test Editing → Test Failure → Test Editing → Test Pass

Test Driven
Development

TDD1. Test Creation → Test Failure → Code Editing → Test Pass
TDD2. Test Creation → Test Failure → Code Editing → Test Pass →
Test Editing → Test Pass
TDD3. Test Creation → Test Failure → Code Editing → Test Pass →
Test Editing → Test Failure → Test Editing → Test Pass
TDD4. Test Creation → Test Failure → Code Editing → Test Pass →
Code Editing → Test Failure → Code Editing → Test Pass

Unknown UK1. None of the above → Test pass

Test Addition It is understood by the addition of new test cases. In this
category there is no change in production source code, only in test source code.
The possible flows are seen in the Figure 1. The first flow corresponds to a test
case which was added and that did not fail when executed. The second flow
considers that, after adding the test case, it failed and had to be edited until
eventually passing.



A tool to measure TDD compliance: a case study with professionals 7

Fig. 1. Test Addition flows.

Test-first In this category, the test case must be created before the correspond-
ing production code. The possible flows are demonstrated in Figure 2. The first
scenario considers that, after test case and code creation, the test case passed.
In the second scenario, the test case is created and executed (probably due to
the absence of the corresponding production code), then the production code is
edited until the test case finally pass. The third flow is similar to the second,
but without the execution of the test case just after its creation.

Fig. 2. Test-first flows.

Test-last In this category, the test case must be created after the production
code is created. The possible flows are demonstrated in Figure 3. In the first
flow, production code and test code are created and the test case pass. In the
second flow, the test case fails, which requires further modification of the tests
until it eventually pass.



8 A. de Matos et al.

Fig. 3. Test-last flows.

Refactoring In this category, it can be performed refactoring for production or
test source code. It also comprehends activities associated with the improvement
of the source code, whether it is carried out in the production code or in test
cases. The possible flows are presented in Figure 4. Two flows are associated with
production code improvement, where test cases can pass after code editing or, in
case of failure, further code editing is required. Respectively, there are two flows
associated with test case improvement, where test cases are under modification.

Fig. 4. Refactoring flows.

Test Driven Development In this category, it must be performed the test
case creation before creating production source code. After the production code



A tool to measure TDD compliance: a case study with professionals 9

is created, it is necessary to perform the refactoring of the production and test
source code. The possible flows are presented in Figure 5. The first flow represents
the traditional TDD cycle, in which test case is created, it fails, production
code is created and modified until the test case pass, and code is improved
(by refactoring), always considering the results of test cases execution. In the
second flow, instead of improving the production code, the code for test cases is
improved (for instance, considering a coverage criteria). Finally, the third flow
is a combination of the both, improving production code and test cases.

Fig. 5. Test Driven Development flows.



10 A. de Matos et al.

Unknown In order for this category to be classified by the tool, none of the
known categories is achieved. In this way, everything that does not contemplate
the heuristics of Table 3 will be classified as Unknown.

3.3 Environment

The tool can be used by developers who use the Eclipse Integrated Development
Environment (IDE), which is compatible with the Oxygen and Photon versions.
It requires Java Runtime Environmnet (JRE) and Java Development Kit (JDK)
in version 8 or higher. The tool for running the automatic tests should be version
4 or higher of JUnit. The Butterfly tool is available on Github3.

4 Case Study

To evaluate the tool the GQM (Goals, Questions and Metrics) paradigm was
used. It consists of a mechanism to define and evolve a set of objectives using
metrics [1]. According to some authors, the GQM approach is recommended for
the definition of experimental studies [14, 21].

Table 4. GQM - Goals, questions and metrics.

Goals Questions Metrics
G1: Evaluate the
compliance of the
TDD process within
iterative software
development

Q1. Is it possible to sort the
actions of the episodes in the
categories of Test-addition,
Test-first, Test-last, Test driven
development, Refactoring, and
Unknown?

M1. Number of
classifications
M2. Number of actions
M3. Number of unit tests
M4. Test coverage

4.1 Instrumentation

The development environment used by the participants has Java in version 8,
IDE Eclipse Oxygen and JUnit 4. The results were generated by the Butterfly
tool installed in the participants Eclipse. Each participant was responsible for
sending the project data created during the experiment. The application chosen
for development was the Bowling Game, which is often used for studies regarding
TDD. The Bowling Game is responsible for calculating the score of a player in
a bowling game according to the requirements specified in Table 5.

4.2 Subjects

The study was attended by professionals working in an organization focused on
software development for the financial market with about 450 professionals in
3 https://github.com/altitdb/butterfly.



A tool to measure TDD compliance: a case study with professionals 11

Table 5. Bowling Game Requirements.

R1 The score of the game can be consulted at any time.
R2 The game consists of 10 rounds.
R3 The player is entitled to two shots to reach the maximum score

(10) on each round.
R4 If on the first shot the maximum score is reached (strike), the

player will not be entitled to the second shoot.
R5 If in both shot the maximum score is reached (spare), the player

will have as bonus the score obtained in the next move.
R6 The strike score bonus is the value of the next two moves.
R7 The player will have two extra shots if he strikes in the tenth

round.
R8 If he reaches the spare in the two shots after the tenth round,

the player will be entitled to one extra shot.

the area of Information Technology (IT). Among the professionals, 7 (seven)
participated. Participants belong to a team of professionals who have completed
advanced IT courses, such as Systems Analysis and Development, Computer Sci-
ence, Information Systems, Computer Science and Software Engineering. They
perform the role of Systems Analyst within the organization and are knowledge-
able with Java language, Eclipse development IDE, test automation tools and
TDD.

4.3 Execution

The execution was organized in three phases: (i) installation and training of
the Butterfly tool, (ii) development of the Bowling Game and (iii) sending the
results. In phase (i), the professionals installed the tool in the Eclipse IDE and
received the training to learn how the tool should be handled. In phase (ii) the
professionals developed the Bowling Game using the Java language, test tool
JUnit and TDD. For each Bowling Game requirement, it is expected that a set
of development activities are performed, from which the development cycles can
be detected. No minimum or maximum time was set for the development of the
game. In phase (iii) the professionals sent the developed game and the results to
the authors by email for evaluation.

5 Results

Considering the purpose of this study, a new tool, called Butterfly, was developed.
It is an evolution of Besouro tool (which, in turn, was an evolution of the Zorro
tool). The main differences, as shown in Table 6, are related to compliance
verification with respect to TDD and implementation dependencies.

The tool developed in this study aims to measure compliance and evaluate the
TDD life cycle, which was limited or not possible using in other tools. Butterfly



12 A. de Matos et al.

Table 6. Comparison of automatic TDD recognition systems.

Tool Dependencies Compliance User
feedback

Compliance
report

Zorro [15] Hackystat,
SDSA, Jess

Context-sensitive
compliance

No No

Besouro [4] Listeners,
JESS, VCS

Varying, according to the
implemented component

Yes No

Butterfly Listeners,
VCS

Standard implementation
according to pre-established
heuristics

Yes Yes

allows to check whether the developer is using TDD correctly, or if is only using
TDD phases such as Test-first and Refactoring. Considering the features from
Table 6, the following differences can be highlighted:

– Dependencies: In the previous tools, some dependencies were fundamental
to the operation of the tool. For instance, the Jess tool was one of the main
components required by them, but it was not free for commercial use. This
led to its removal from the Butterfly tool, replacing its functionality by new
code written by the authors.

– Compliance: Actions described in the literature were considered, and it no
longer varies according to contexts or implementations as performed in the
previous tools.

– User feedback: It was kept as in the Butterfly tool, given its importance
in classifying actions that are not considered correct, making it possible to
improve the tool in the future.

– Compliance report: A novelty in the Butterfly tool is the summarization of
the actions performed by the user. With this report it is possible to analyze
the percentage of use of the user’s actions.

A case study was conducted to validate the use of the developed tool. In
Table 7, it is presented a summary of the measurements taken from the execu-
tions for each developer during the execution of the empirical study described
in Section 4. For metrics, the following definitions are adopted : classifications
(M1) as the number of episodes classified by the tool according to the categories
defined in Table 3; actions (M2) as the amount of actions carried out by each
developer, as presented in Table 2; unit tests (M3) as the amount of automated
test cases created by the developers; and test coverage (M4) as the percentage of
production code that was covered by the unit tests with respect to control-flow
criterion (statements coverage).

Metrics M1 and M2 are directly linked to the activity development effort
while metrics M3 and M4 can be used to diagnose testing activities. Comparing
the measurements with manual analysis of the code produced by the developers,
There is no disagreement with the measurements (and classifications) made by
the tool against the actions carried out by the user.



A tool to measure TDD compliance: a case study with professionals 13

Table 7. Measurements regarding usage of Butterfly tool.

Developer Classifications (M1) Actions (M2) Unit tests (M3) Test coverage (M4)
D1 38 311 12 92
D2 32 223 6 100
D3 63 692 21 90.6
D4 88 505 13 99.7
D5 35 356 10 96.2
D6 119 732 29 95.2
D7 21 262 10 100
Average 56.57 440.14 14.42 96.24
Median 38 356 12 96.2

6 Discussion

Using the tool, it was possible to evaluate the TDD life cycle, evaluating the red-
green-refactoring cycle as a whole and separately. The granularity, uniformity,
sequence and effort of refactoring, which were presented in the Table 1, can be
measured individually or in combination. Furthermore, providing facilities that
can summarize the results generated by users actions facilitates the analysis
of long-term empirical studies or with a large amount of user participation.
Therefore, the tool enable to further evaluate development activities, and to
try out new approaches within each process of the TDD life cycle, being able
to evaluate the effects within a single TDD phase or for the complete TDD
iteration. For instance, the inclusion of the use of test criteria in the TDD cycle
is being evaluated, and this study provides a tool that will help evaluate this
inclusion, so that gains are obtained and threats removed or mitigated.

Making the tool open-source gives researchers the possibility of new imple-
mentations without the need to learn new frameworks. In order for the exten-
sibility of the tool to be carried out, only knowledge in the Java language is
necessary.

7 Conclusion

In this study, it was presented the Butterfly tool, which is a tool built with the
purpose of analyzing the process of developing iterative software by classifying
it into categories. Each category has a set of heuristics, which are responsible for
determining in which category the user’s actions meet. The categories offered
by the tool are: Test Addition, Test-first, Test-last, Test Driven Development,
Refactoring, and Unknown.

To perform the tool evaluation the GQM paradigm was used, allowing to
elaborate objectives, questions and metrics for the purpose of evaluating exper-
imental studies. The Butterfly tool serves the purpose of this study, which is
to evaluate the compliance of the TDD process in the development of iterative
software. With the established metrics it is possible to verify that the actions



14 REFERENCES

and episodes generated were categorized in an expected way. There were no
divergences between developers and the categorization performed by the tool.

Finally, a tool that can support empirical studies about TDD was developed,
easing the analysis of the information generated. The Butterfly tool was pro-
vided on Github4, so that the source code can be used by researchers or by the
community at large. The tool is also open to further improvements, and the
community can contribute using the open source format.

References

1. Basili, V.R. Software Modeling and Measurement: The Goal/Question/Metric
Paradigm. Tech. rep. CS-TR-2956, UMIACS-TR-92-96. College Park, MD, USA:
University of Maryland, Sept. 1992, p. 24. url: http://www.cs.umd.edu/~basili/
publications/technical/T78.pdf

. 2. Beck, K.: eXtreme Programming Explained: Embrace Change. Addison-Wesley,
USA (1999)

3. Beck, K.: Test-Driven Development: By Example. Addison-Wesley Professional,
USA (2002)

4. Becker, K., de Souza Costa Pedroso, B., Pimenta, M.S., Jacobi, R.P.: Besouro: A
framework for exploring compliance rules in automatic TDD behavior assessment.
Information and Software Technology 57, 494–508 (2015)

5. Briand, L., Bianculli, D., Nejati, S., Pastore, F., Sabetzadeh, M.: The Case
for Context-Driven Software Engineering Research: Generalizability Is Overrated.
IEEE Software 34(5), 72–75 (2017)

6. Causevic, A., Punnekkat, S., Sundmark, D.: TDDHQ: Achieving higher quality
testing in test driven development. In: Euromicro Conference Series on Software
Engineering and Advanced Applications, pp. 33–36, Santander, Spain (2013)

7. Causevic, A., Sundmark, D., Punnekkat, S.: Factors Limiting Industrial Adoption
of Test Driven Development: A Systematic Review. In: International Conference on
Software Testing, Verification and Validation, pp. 337–346. IEEE, Berlin, Germany
(2011)

8. Causevic, A., Shukla, R., Punnekkat, S., Sundmark, D.: Effects of Negative
Testing on TDD: An Industrial Experiment. In: Baumeister, H., Weber, B. (eds.)
International Conference on Agile Software Development, LNBIP, vol. 149, pp. 91–
105. Springer, Heidelberg (2013)

9. Fucci, D., Erdogmus, H., Turhan, B., Oivo, M., Juristo, N.: A Dissection of
the Test-Driven Development Process: Does It Really Matter to Test-First or to
Test-Last? Transactions on Software Engineering 43(7), 597–614 (2017)

10. Garousi, V., Felderer, M., Kuhrmann, M., Herkiloğlu, K.: What Industry Wants
from Academia in Software Testing?: Hearing Practitioners’ Opinions. In: Interna-
tional Conference on Evaluation and Assessment in Software Engineering, pp. 65–
69. ACM, Karlskrona, Sweden (2017)

11. George, B., Williams, L.: A structured experiment of test-driven development.
Information and Software Technology 46(5), 337–342 (2004)

12. Hammond, S., Umphress, D.: Test Driven Development: The State of the Practice.
In: Smith, R.K., Vrbsky, S.V. (eds.) ACM Annual Southeast Regional Conference,
pp. 158–163. ACM, Tuscaloosa, Alabama, USA (2012)

4 https://github.com/altitdb/butterfly.



REFERENCES 15

13. Janzen, D., Saiedian, H.: Test-driven development concepts, taxonomy, and future
direction. Computer 38(9), 43–50 (2005)

14. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation.
Kluwer Academic Publishers (2001)

15. Kou, H., Johnson, P.M., Erdogmus, H.: Operational definition and automated
inference of test-driven development with Zorro. Annals of Software Engineering
17(1), 57–85 (2010)

16. Offutt, J.: Why don’t we publish more TDD research papers? Software Testing,
Verification and Reliability 28(4), e1670 (2018)

17. Pachulski Camara, B.H., Graciotto Silva, M.A.: A Strategy to Combine Test-
Driven Development and Test Criteria to Improve Learning of Programming Skills.
In: Technical Symposium on Computing Science Education, pp. 443–448. ACM,
Memphis, TN, USA (2016)

18. Raulamo-Jurvanen, P., Mäntylä, M., Garousi, V.: Choosing the Right Test Au-
tomation Tool: A Grey Literature Review of Practitioner Sources. In: International
Conference on Evaluation and Assessment in Software Engineering, pp. 21–30.
ACM, Karlskrona, Sweden (2017)

19. Shelton, W., Li, N., Ammann, P., Offutt, J.: Adding Criteria-Based Tests to Test
Driven Development. In: International Conference on Software Testing, Verification
and Validation, pp. 878–886. IEEE, Montreal, QC, Canada (2012)

20. Spinellis, D.: State-of-the-Art Software Testing. IEEE Software 34(5), 4–6 (2017)
21. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén,

A.: Experimentation in Software Engineering: An Introduction. Kluwer Academic
Publishers, Sweden (2000)


