
Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY

38
th
 ASEE/IEEE Frontiers in Education Conference

T1A-1

Integrated Teaching of Programming Foundations

and Software Testing

Ellen F. Barbosa, Marco A. G. Silva, Camila K. D. Corte, and José C. Maldonado
University of São Paulo (ICMC/USP), São Carlos/SP, Brazil 13560-970

{francine, magsilva, camila, jcmaldon}@icmc.usp.br

Abstract – The importance of software testing is widely

recognized, but usually only a small portion of the

Computer Science (CS) curriculum is allocated for

teaching it. Some experiences have suggested that the

teaching of software testing should begin as early as

possible so an adequate culture of testing could be created.

One way to achieve this is addressing testing practices in

conjunction with programming concepts in introductory

CS courses. In this paper we explore such idea, working on

the integration between the teaching of software testing

along with the teaching of programming foundations. We

discuss the development of an educational module, and its

related learning materials, for integrating such knowledge

domains. Besides that, we propose PROGTEST – a Web-

based environment for the submission and automatic

evaluation of practical programming assignments based on

testing activities, aiming at providing an adequate

feedback to evaluate the learners’ performance concerning

programming and testing.

Index Terms – Educational modules, Programming

foundations, Software testing, Supporting tools.

INTRODUCTION

Software testing is the process of executing a program with

the intent of finding errors [1]. In the context of Software

Engineering, testing is one of the most important activities to

guarantee the quality and the reliability of the software under

development but, at the same time, it is a difficult topic to

learn or teach without the appropriate support.

Traditionally, testing has been taught at the very end of

the Computer Science (CS) learning process. Besides that,

usually only a small portion of the CS curriculum is allocated

for testing in comparison to other activities of the software

development process [2]. On the other hand, recent

experiences have suggested that the testing activity could be

taught as soon as possible in the learning process. Earlier

mastering of testing concepts and techniques would:

(1) improve the reasoning about the program (and its

solution), leading to better high quality products; and (2)

induce and facilitate the use of testing throughout the software

development process, leading to a better high quality process,

in contrast to the current practices.

One of the initiatives which has been investigated refers

to the introduction of testing concepts in conjunction with

programming foundations in introductory CS courses [3]-[6].

Programming foundations is not an easy subject to be taught –

many students have difficulties understanding the abstract

concepts of programming [7] and have a wrong view about the

programming activity [6]. Thus, the main challenge in

introductory CS courses is to make them interesting and

relevant for learners [8]. Since testing requires the learners to

know the behavior of their programs, such activity could be

explored to help them understand the abstract concepts of

programming and develop the expected skills [6].

Furthermore, since testing forces the integration and the

application of theories and skills of software analysis, project

and implementation, learners who start testing earlier could

become better testers and developers as well [4][5][9]. In fact,

the idea is to create an adequate “culture of software testing”

among learners (and developers).

We intend to work on the integrated teaching of software

testing and programming foundations in introductory CS

courses. Basically, we have investigated two mechanisms to

support our ideas. The first one refers to the development of

an educational module for teaching testing and programming

concepts in a simultaneous way. We chose to explore the

Object-Oriented (OO) paradigm and the Java language,

following the current tendencies of CS curriculum for teaching

programming concepts [10]. We are based on a standard

process for constructing educational modules and on a set of

models for structuring the related educational content, both

proposed in Barbosa’s work [11]-[13]. The second one refers

to the development of PROGTEST – a Web-based

environment for the submission and automatic evaluation of

practical programming assignments based on testing activities.

In short, such environment can provide an appropriate

feedback to evaluate the learners’ performance concerning

programming and testing.

The remainder of this paper is organized as follows.

Section 2 discusses some of the main issues on teaching

programming foundations and software testing. In Section 3

we provide a brief overview on the related work regarding the

development of educational modules. The construction of an

educational module for programming and testing is presented

in Section 4. In particular, we focus on the content modeling

activity for developing the integrated educational content.

Section 5 discusses the main aspects of PROGTEST. Section

6 presents our conclusions and further work.

SOME ISSUES ON TEACHING PROGRAMMING AND TESTING

As said before, the main challenge in introductory CS courses

is to make them interesting and relevant for learners [8]. In

general, the traditional approach in introductory CS courses is

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY

38
th
 ASEE/IEEE Frontiers in Education Conference

T1A-2

to provide an overview on Computer Science and then start

teaching the programming foundations by using some specific

language (such as Pascal, C or Java) [8]. Most of the time,

however, the emphasis is in the syntax of the language instead

of solving the problem through the development of algorithms.

As a consequence, students learn how to program through a

trial-and-error practice, without developing the adequate

comprehension and analysis skills [6].

Over the last years, many universities have changed their

curricula in order to introduce the OO paradigm as a way for

better motivating learners on basic programming concepts.

However, such initiative is not sufficient to solve the learners’

problems concerning programming. They still have difficulties

understanding how to design a program to solve a certain task,

dividing functionality into procedures and finding bugs in

their own programs [7]. Furthermore, the learners have wrong

views about the programming activity, such as [6]:

(1) once the compiler accepts the code without complaining,

all errors have been removed; (2) once the code produces the

output expected on a test value or two, it will work well all the

time; (3) the code looks “correct” for the students; (4) once the

code gives the correct answer for the instructor’s sample data,

it is finished.

Edwards [6] highlights the application of software testing

in conjunction with programming foundations in introductory

CS disciplines can make the learners more careful with respect

to the development and understanding of algorithms [6].

However, the teaching of testing in introductory CS courses is

not a trivial task. Several problems regarding to this subject

can be pointed out [5][6]:

• Software testing requires the learners have experience at

programming.

• Instructors have to evaluate the program correctness

manually. It may not be feasible to evaluate the test cases

too.

• Learners need constant and concrete feedback on how to

improve their performance on testing at many points

throughout the development of a solution rather than just

once at the end of an assignment.

• Learners see testing as a boring activity, where much time

is spent on performing the tests and the writing of test

plans creates a large overhead in the workload.

Despite such limitations, Barriocanal [3] has shown that

the teaching of testing earlier can improve the quality of the

code implemented and can ease the learning process, both of

testing and of programming. Barriocanal has also investigated

if the learners are keen on to perform tests in their programs.

The majority found the idea valid – although recognizing that

testing is a little boring activity, they agreed that it brings

benefits, both to the improvement of the quality of the

programs constructed as well as to the assimilation of the

programming concepts taught in the course.

EDUCATIONAL MODULES DEVELOPMENT: AN OVERVIEW

Educational modules are concise units of study, composed by

theoretical and practical content which can be delivered to

learners by using technological and computational resources

[11]-[13]. For theoretical content, instructors use books,

papers, web information, slides, class annotations, audio,

video, and so on. Practical content is the instructional

activities and associated evaluations, as well as their resulting

artifacts (e.g., executable programs, experimental studies,

collaborative discussions). Theoretical and practical content

are integrated in terms of learning materials. Learning

environments, presentation tools and mechanisms to capture

classroom lectures and to support discussion spaces and

collaborative work are examples of the required infrastructure

for delivering the learning materials.

Similar to software products, educational modules require

the establishment and integration of methods, tools and

procedures into systematic processes aiming at producing

reliable, evolvable and quality products. Additionally, some

specific aspects must also be considered, such as the subject

knowledge domain, the learner’s profile, the course objectives,

the pedagogical strategies to be adopted, among others.

In this perspective, in a previous work, Barbosa et al.

have investigated and defined some supporting mechanisms

for developing educational modules [11]-[13]. In particular, a

Standard Process for Educational Modules and an integrated

modeling approach for educational content (IMA-CID –

Integrated Modeling Approach: Conceptual, Instructional and

Didactic) were established.

The Standard Process for Educational Modules is based

on the International Standard ISO/IEC 12207, tailored to the

context of educational modules by including aspects of

content modeling, practices from instructional design, and

issues of distributed and cooperative work [11]. The IMA-CID

approach is composed by a set of models, each one addressing

specific issues in the development of educational modules

[12]:

• The Conceptual Model corresponds to a high-level

description of the knowledge domain, representing the

main concepts and the relationships among them.

According to IMA-CID, the construction of a conceptual

model focuses on the ideas and rules of Conceptual

Mapping [14].

• The Instructional Model characterizes what kind of

additional information (e.g., facts, principles, procedures,

examples, and exercises) can be incorporated to the

educational content, relating them to the concepts

previously identified. As a support to construct the

instructional model, IMA-CID adopts the HMBS

(Hypertext Model Based on Statecharts) model [15],

focusing on the mechanisms for hierarchical

decomposition it provides. The extended version of

HMBS, applied to the instructional level of IMA-CID, is

named HMBS/Instructional.

• The Didactic Model is responsible for the establishment

of prerequisites and sequences of presentation among the

objects previously characterized in the conceptual and

instructional models. HMBS is also adopted in the

didactic level of IMA-CID – HMBS/Didactic. As an

extension to the model, we have also introduced the idea

of an open specification, which provides support for the

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY

38
th
 ASEE/IEEE Frontiers in Education Conference

T1A-3

definition of dynamic contexts of learning. Depending on

aspects such as audience, learning goals and course

length, distinct ways for presenting and navigating

through the same content can be required. An open

specification allows representing all sequences of

presentation in the same didactic model. So, from a single

model, several versions of the same content can be

generated according to different pedagogical aspects.

Moreover, when an educational module is implemented

based on an open specification (open implementation), its

navigation paths can be defined by the user, in “execution

time”, based on the learner’s understanding and feedback,

for instance.

An educational module for programming and software

testing has been developed using the supporting mechanisms

defined in Barbosa’s work [11]-[13]. Next, we discuss the

main characteristics of the module, focusing on the modeling

aspects of its educational content.

 AN EDUCATIONAL MODULE FOR PROGRAMMING

FOUNDATIONS AND SOFTWARE TESTING

One of the mechanisms we have worked on to promote the

integrated teaching of software testing and programming

foundations refers to the development of an educational

module (and its related educational content) on such subjects.

The idea is to gradually introduce the testing fundamentals

while the programming concepts are being taught to the

learners. Basically, we have investigated the main OO

concepts taught in introductory CS courses, defining which

testing concepts can be taught in conjunction with them.

The module is composed in terms of two submodules –

one for programming foundations and other for software

testing. Each submodule is implemented as a set of slides, to

which HTML pages, text documents, learning environments

and supporting tools have been integrated. In the case of the

Software Testing submodule, for instance, a coverage testing

tool – JaBUTi (Java Bytecode Understanding and Testing)

[16], which supports coverage analysis to test Java programs

and Java components – has been incorporated to foster the

practical application of testing into OO programs.

The submodules have been integrated to each other by

means of specific links, which represent the integration points

between programming and testing. Figure 1 illustrates part of

such integration. Starting from the main slide of the module,

the user can navigate through the structure of both the

Programming Foundations submodule and the Software

Testing submodule. While the specific programming concepts

are presented, links to their corresponding parts in the Testing

submodule are enabled. The same occurs for testing concepts

with respect to the Programming submodule. For instance,

Figure 1(a) corresponds to the main slide of the module; links

for Programming and for Testing submodules are activated.

Consider we choose to navigate through the Programming

submodule, more specifically looking for information related

to control-flow statements (Figure 1(b)). From this point, we

are able to explore the concepts related to structural testing, in

particular the All-Edges control-flow criterion (Figure 1(c)).

Additionally, we can reach the JaBUTi testing tool, which

allows to explore in the practice the concepts learned so far

(Figure 1(d)).

The module has been developed according to the Standard

Process for Educational Modules [11], briefly discussed in the

previous section. Its educational content has been modeled

with basis on the set of models of the IMA-CID approach [12].

Figure 2 shows the integrated conceptual model for

programming and testing. Such model was constructed based

on two other conceptual models – one dealing specifically

with the main concepts of OO programming and other one

dealing with the testing concepts.

FIGURE 1
SCENARIO OF NAVIGATION THROUGH PROGRAMMING AND TESTING SUBMODULES.

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY

38
th
 ASEE/IEEE Frontiers in Education Conference

T1A-4

FIGURE 2

INTEGRATED CONCEPTUAL MODEL FOR PROGRAMMING AND TESTING.

Considering the OO programming, we established that

Programming Language concepts could be divided into the

following categories: (1) Basic Concepts, which deals with

objects, methods and classes; (2) Essential Commands, which

refers to primitive data types, variables, constants, operators,

strings and I/O commands; (3) Control Flow Statements,

composed of branching and loop statements; (4) Files;

(5) Exception Handling; and (6) Advanced Concepts, which

deals with encapsulation, inheritance and polymorphism.

Regarding software testing, we divided its main concepts

in the following classes: (1) Testing Terminology, which deals

with basic concepts, such as taxonomy of errors, test cases,

test suite, adequacy and selection criteria; (2) Testing Steps,

addressing the required steps to perform a testing activity

(planning, test case design, execution and analysis);

(3) Testing Phases, characterized into unit, integration and

system testing; (4) Testing Techniques, which refers to the

functional, structural and error-based techniques and criteria;

and (5) Testing Tools, which refers to the supporting

mechanisms applied to automate the testing activity.

After defining both models separately, we established the

“connection points” where their concepts could be integrated.

For instance, while addressing the basics of the OO Paradigm,

the main ideas of a testing activity, covered by Testing

Terminology and Testing Steps, can be introduced. The Basic

Concepts of OO can be taught in conjunction with the Testing

Phases. The relevant point here refers to the discussion about

which elements of OO should be taken as the smallest unit of

an OO program (method or class), determining which types of

OO testing (intra-method, inter-method, intra-class and inter-

class) characterize each testing phase.

The Essential Concepts of an OO programming language

can be introduced in conjunction with the general concepts of

Testing Techniques. At this stage, the emphasis can be on the

functional (e.g., Equivalence Partitioning) and on the

structural criteria, in particular the All-Nodes control-flow

criterion [1]. After introducing the Control Flow Statements,

the testing techniques must be reinforced and the All-Edges

control-flow criterion [1] can be addressed. The concepts

related to specific types of Variables (such as arrays) and Files

should be taught in conjunction with the data-flow testing

criteria, emphasizing the Rapps & Weyuker criteria (e.g., All-

Definitions, All-Uses) [17]. By introducing Exception

Handling and Advanced Concepts, the data-flow criteria must

be reinforced and deepened. The set of structural criteria

defined by Vincenzi (e.g., All-Nodes-Exception-Dependent,

All-Nodes-Exception-Independent) [16] as well as the error-

based criteria (e.g., Mutation Analysis [18]) are examples that

can be explored in advanced stages of the learning process of

programming foundations.

After having developed the integrated conceptual model

for programming and testing, we defined the integrated

instructional and didactic models for such domains, i.e., the

HMBS/Instructional and the HMBS/Didactic models. For the

sake of space, these models are not illustrated here. In the

instructional model, we focused on representing the

integration of supporting tools to the module. For instance,

JUnit [19] – a framework that supports the creation and

execution of test cases and test suites – was considered to be

introduced even at the initial stages of the module. Coverage

testing tools, such as JaBUTi [16], were also considered in

order to provide mechanisms to exercise and explore specific

theories and skills, motivating the students to put in practice

the concepts they have learned. Such tools can be introduced

at intermediary and advanced stages. Figure 1 illustrates part

of the integration among programming concepts (control flow

statements), testing concepts (All-Edges criterion) and tools

application (JaBUTi) we have explored in the module.

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY

38
th
 ASEE/IEEE Frontiers in Education Conference

T1A-5

In the didactic model, we established: (1) the sequences of

presentation for each submodule; and (2) the sequences of

presentation among them. At any time we can stop exploring

the Testing submodule and return to the programming

concepts. The same is valid for the Programming submodule

in relation to the testing basics. Thus, the free navigation from

the Programming submodule to the Testing submodule (and

vice versa) gives flexibility for the instructor to adequate the

educational content according to the learners’ performance in

“execution time”. Such flexibility is due to the fact that the

module is implemented according to an open specification

(explored in the didactic model), which addresses all the

possible presentation sequences in the same model.

PROGTEST: AN ENVIRONMENT FOR THE SUBMISSION AND

EVALUATION OF PRACTICAL ASSIGNMENTS

A critical issue for the success of the integrated teaching of

programming foundations and software testing is how to

provide an appropriate feedback and to evaluate the learner’s

performance. In this learning scenario, the instructors’

workload is doubled since both the test cases and the code

must be evaluated. An alternative aiming at reducing such

workload is the use of an automated environment to evaluate

practical assignments [6]. Moreover, the use of such

environment can bring additional benefits in terms of

consistence, efficacy and efficiency. Submitted programs are

analyzed as a whole in the same level of efficiency and the

results of the evaluation are based on the same standards.

After the evaluation, the environment can also generate

reports, so each learner is informed of his/her own

performance and can be compared with the average and most

productive ones.

In this perspective, we are developing an environment for

the submission and automatic evaluation of practical

programming assignments based on testing activities –

PROGTEST. The idea is to provide an automated support to

evaluate the programs and the test cases submitted by the

learners. Actually, both the code quality and the testing

activity can be analyzed based on the testing criteria adopted.

Coverage testing tools should be integrated to the environment

as a support to apply the testing criteria and to evaluate the

coverage of the test set, obtained from the programs’

execution. For the integrated teaching of programming

foundations and software testing, we are using JaBUTi [16] as

the coverage testing tool to be integrated to PROGTEST.

Figure 3 shows the main features of PROGTEST. Given a

program PSt_i (provided by the students) and its respective test

case set TSt_i (produced based on a criterion CK previously

established – TSt_i is CK−adequate), the environment,

integrated to a coverage testing tool, must be able to:

1. Execute the program PSt_i against the test case set TInst

(provided by the instructor);

2. Utilize the test cases set TSt_i to test the “oracle

program” PInst (provided by the instructor);

3. Compare the behavior of PInst, executed against the

test cases set TInst, to the behavior of PSt_i, executed

against the test cases set TInst; and

4. Compare the behavior of PInst, executed against the

test cases set TSt_i, to the behavior of PSt_i, executed

against the test cases set TSt_i.

FIGURE 3

PROGTEST: MAIN FEATURES.

By performing such executions, PROGTEST provides the

code coverage adequacy analysis of the test cases used. Both

functional (by using JUnit) and structural testing are

considered. Based on the results obtained, PROGTEST is able

to accept or reject the program and the test cases set provided

by the learners as well as to suggest a grade to the assignment.

It is important to highlight that right after having submitted

his/her assignment, the learner can visualize its evaluation

report. Figure 4 illustrates the evaluation reports provided by

PROGTEST
1
.

FIGURE 4

PROGTEST: EVALUATION REPORTS.

PROGTEST is a Web Java application, developed as an

open source initiative. Three modules are responsible for

implementing the main functionalities of the environment:

(1) course management module, which deals with the

management of users (learners and instructors), classes and

assignments; (2) submission module, which deals with the

management of the learners’ assignments and the instructors’

oracle programs; and (3) evaluation module, which deals with

the management and the execution of each evaluation.

As a Web application, PROGTEST follows the Model-

View-Controller (MVC) architecture. The SUN's JSF

1 PROGTEST was originally developed in Portuguese. An English version of

the environment is under development.

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY

38
th
 ASEE/IEEE Frontiers in Education Conference

T1A-6

framework handles the View and Controller components. The

Model is implemented as plain Java classes and the data is

persisted using the DAO pattern, handled by JDBC

statements, and direct access to XML documents.

PROGTEST is under development and we are now

defining systematic and controlled experiments to validate it

into the context of the integrated teaching of programming and

testing. Such experiments have already been planned for the

next term, involving different courses offered to graduate and

undergraduate students at ICMC/USP. Furthermore, both

learners and instructors’ attitudes toward the educational

module produced should also be evaluated.

CONCLUSIONS AND FURTHER WORK

In this paper we investigated some supporting mechanisms to

integrate the teaching of software testing along with the

teaching of programming foundations. From the point of view

of programming, the testing activity can contribute to enhance

the learners’ capabilities of understanding and analysis. From

the point of view of software testing, a testing culture can be

created earlier, so it may become a common practice among

developers, motivating them to apply it from the very

beginning of software development.

In this perspective, we discussed the development of an

educational module for integrating programming and testing,

focusing on the modeling activity of its related educational

content. Also, we proposed PROGTEST – an environment for

submission and automatic evaluation of practical assignments,

whose main objective is to provide an adequate feedback to

evaluate the learners’ performance concerning programming

and testing.

As a further work, we intend to apply the educational

module, in conjunction with the PROGTEST environment, in

introductory CS courses for undergraduate students. The goal

is to evaluate the practical use of our mechanisms and ideas in

real projects and learning scenarios. Further studies have also

been planned in order to investigate the use of conceptual

models in the development of domain ontologies and vice

versa. In this sense, the conceptual models for programming

foundations and software testing can be explored in the

development of an integrated ontology for these domains.

ACKNOWLEDGMENT

The authors would like to thank the Brazilian funding agencies

(FAPESP, CAPES and CNPq) and the QualiPSo Project

(IST- FP6-IP-034763) for their financial support.

REFERENCES

[1] G. J. Myers, Corey Sandler, Tom Badgett, and Todd M. Thomas. The

Art of Software Testing. John Wiley & Sons, 2nd. edition, 2004.

[2] T. Shepard, M. Lamb, and D. Kelly. More testing should be taught.

Communications of the ACM, 44(06):103–108, 2001.

[3] E. G. Barriocanal, M. A. S. Urbán, I. A. Cuevas, and P. D. Pérez. An
experience in integrating automated unit testing practices in an

introductory programming course. In ACM SIGCSE Bulletin, volume 34,

pages 125–128, 2002.

[4] E. F. Barbosa, J. C. Maldonado, R. Leblanc, and M. Guzdial.

Introducing testing practices into objects and design course. In 16th
Conference on Software Engineering Education and Training

(CSEE&T’03), pages 279–286, Madrid, Spain, 2003.

[5] A. Patterson, M. Kölling, and J. Rosenberg. Introducing unit testing with
BlueJ. In 8th Annual Conference on Innovation and Technology in

Computer Science Education (ITiCSE’03), Thessaloniki, Greece, 2003.

[6] S. H. Edwards. Using software testing to move students from trial-and-
error to reflection-in-action. In 35th SIGCSE Technical Symposium on

Computer Science Education, pages 26–30, Norfolk, Virginia, USA,

2004.

[7] E. Lahtinen, K. Ala-Mutka, and H. Järvinen. A study of the difficulties

of novice programmers. In ITiCSE ’05: Proceedings of the 10th annual

SIGCSE conference on Innovation and technology in computer science
education, pages 14–18, New York, NY, USA, 2005. ACM Press.

[8] T. J. Hickey. Scheme-based web programming as a basis for a CS0

curriculum. In 35th SIGCSE Technical Symposium on Computer Science
Education, pages 353–357, Norfolk, Virginia, USA, 2004.

[9] E. L. Jones. An experimental approach to incorporating software testing

into the computer science curriculum. In 31st ASEE/IEEE Frontiers in
Education Conference, pages 7–11, Reno, Nevada, 2001.

[10] S. Cooper, W. Dann, and R. Pausch. Teaching objects-first in

introductory computer science. In 34th SIGCSE Technical Symposium
on Computer Science Education (SIGCSE’03), volume 35, pages 191–

195, Reno, Navada, USA, 2003.

[11] E. F. Barbosa, and J. C. Maldonado. An integrated content modeling
approach for educational modules. In IFIP 19th World Computer

Congress – International Conference on Education for the 21st Century,
pages 17–26, Santiago, Chile, August 2006.

[12] E. F. Barbosa, and J. C. Maldonado. Towards the establishment of a

standard process for developing educational modules. In 36th Annual
Frontiers in Education Conference (FIE’06), San Diego, CA, October

2006. CD-ROM.

[13] E. F. Barbosa, S. R. S. Souza, and J. C. Maldonado. An Experience on
Applying Learning Mechanisms for Teaching Inspection and Software

Testing. In 21st Conference on Software Engineering Education and

Training (CSEE&T’08), pages 189-196, Charleston, SC, April 2008..

[14] J. D. Novak. Concept mapping: A useful tool for science education.

Journal of Research in Science Teaching, 27:937–949, 1990.

[15] M. A. S. Turine, M. C. F. Oliveira, and P. C. Masiero. Designing
structured hypertext with HMBS. In VIII International ACM Hypertext

Conference (Hypertext 97), pages 241–256, Southampton, UK, April

1997.

[16] A. M. R. Vincenzi, J. C. Maldonado, M. E. Delamaro, E. S. Spoto, and

W. E. Wong. Component-based software: An overview of testing. In

Component-Based Software Quality: Methods and Techniques, pages

99–127, New York, NY, June 2003. Springer-Verlag. Lecture

Notes in Computer Science, v. 2693.

[17] S. Rapps and E. J. Weyuker. Selecting software test data using data flow

information. IEEE Transactions on Software Engineering (TSE),
11(04):367–375, 1985.

[18] R. A. Demillo, R. J. Lipton, and F. G. Sayward. Hints on test data
selection: Help for the practicing programmer. IEEE Computer,

11(04):34–41, 1978.

[19] T. Husted and V. Massol. JUnit in Action. Manning Publications, 2004.

