
A Strategy to Combine Test-Driven Development and Test
Criteria to Improve Learning of Programming Skills

Bruno Henrique Pachulski Camara
Federal University of Technology - Paraná

PPGI, Cornélio Procópio, PR, Brasil
Faculdade Integrado, Campo Mourão, PR, Brazil

brunohenrique@grupointegrado.br

Marco Aurélio Graciotto Silva
Departamento Acadêmico de Computação
Federal University of Technology - Paraná

Campo Mourão, PR, Brazil
magsilva@utfpr.edu.br

ABSTRACT
Students usually have difficulties assimilating basic contents
of introductory programming disciplines. Test-Driven De-
velopment (TDD) is an interesting approach to address this
issue, but it does not focus on quality with respect to software
testing. This study aims to verify the effectiveness of the
use of software testing criteria for producing test cases with
higher quality in the context of education with TDD. We
used the test-driven development technique with a change in
the refactoring step, adding an activity for creating test cases
using software testing criteria. We performed two experi-
mental studies to evaluate the effectiveness of the technique.
Each study comprised two groups: one using traditional
TDD and the other using TDD with test criteria, both hav-
ing developed the same software. The results showed that
groups applying the proposed intervention produced better
test cases, with greater coverage, and not disrupting TDD.
Moreover, we could observe that, in general, the test set for
groups using TDD with criteria was more efficient, getting
greater coverage with fewer test cases than groups using
plain TDD.

Keywords
test-driven development; TDD; software testing; structural
testing; computing education

1. INTRODUCTION
Reflection in action fosters learning with proper compre-

hension of problems [10], avoiding the usual acting on trial
and error [10, 18]. Instead, doubts found on learning activi-
ties are addressed with micro-experiments, whose hypotheses
are carefully studied before trying to solve them. In the
introduction to programming, techniques relying on software
testing or test-driven development support reflection in ac-
tion, yet promoting incremental software development and
early detection of defects [8, 10, 17].
On one hand, several studies report that requiring software

testing techniques for programming courses allow students

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE ’16, March 2–5, 2016, Memphis, TN, USA.
© 2016 ACM. ISBN 978-1-4503-3685-7/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2839509.2844633

to produce better software, evidenced by higher test suite
coverage and defects detection [4, 25, 26]. On the other hand,
there are plenty of approaches using TDD for education:
development of software for different (and more motivating)
domains, such as Web [23], games [16]; intelligent tutoring
systems [14], automatic assessment mechanisms [3, 9, 10, 27],
and others. However, few studies consider integrating
both. Software testing is often used to grade assignments,
considering test cases coverage [8, 11]. Moreover, the explicit
use of software testing techniques is not considered when
designing test cases, even when using TDD.
In fact, TDD does not focus on applying software test tech-

niques and creating effective test sets with respect to some
test criteria. Recently, some studies focused on integrating
TDD and software testing, evaluating improvements on the
test set quality (coverage), time required for development and
overall source code quality [6, 7]. Nonetheless, this has not
been investigated in the educational context, thus devising a
strategy that could be successfully used by students.
Considering this scenario, our study establishes an ap-

proach for integrating test-driven development with software
testing techniques. Our goal is to improve reflection in action
by using criteria when developing test cases. Thus, we have
changed the TDD workflow, adding an activity to create
test cases based upon control-flow test criteria. This action
is complementary to test cases created at the beginning of
TDD, avoiding major changes to the usual TDD workflow.
The impact of this change and the adoption of basic

structural test criteria are intentional, reducing the need for
introducing concepts that could be an obstacle for students.
At the same time, we expect the approach to guide students
in creating better test sets, avoiding ad hoc approaches and
improving the reflection in action.
The remainder of this paper is organized as follows. We

provide the main concepts regarding TDD and test criteria
required by our approach on Section 2. We evaluated it
by an experimental study with students from a graduation
course on Information Systems, as described on Section 3.
The students were organized in two groups, allowing the
comparison between traditional TDD and TDD with test
criteria. We could observe that students who employed TDD
with test criteria produced software with better internal
quality, i.e., test sets that covered most test requirements,
yet with similar test set size, as reported on Section 4.
Threats to the validity of our study are analyzed on Section 5.
We compared our study with related work on TDD with
test criteria on Section 6, followed by conclusions and

443

considerations for further evaluation of the current strategy
and improvements on Section 7.

2. TEST-DRIVEN DEVELOPMENT WITH
TEST CRITERIA

Test-driven development (TDD) is an iterative software
design technique organized in three stages [2, p. 9]. The
first one requires the definition of test cases regarding
the functionality to be implemented in the iteration. In
the software testing community, this stage is known as
test-first. Meanwhile, this stage is nicknamed as red by
the TDD community, as every test case created will fail.
The implementation of code required to pass the test case
is the goal of the second stage (green). The last stage
comprises refactoring the code, improving the solution design
without changing the functionality just implemented. After
refactoring, a new iteration can be commenced, selecting new
functionalities for implementation [2, p. 9].
However, TDD was created as a design technique, con-

tributing to high cohesion, and low coupling [18]. An impor-
tant rule in TDD is: “If you can’t write a test for what you
are about to code, then you shouldn’t even be thinking about
coding” [13]. Indeed, testability is often asserted as a driver
for (requirement) quality. For TDD, such quality attribute is
enforced by extensive use of unit testing, driving the creation
and modification of code. Nonetheless, despite the impor-
tance of test cases, they are not created with respect to some
test criteria [1, 2].
Software testing criteria aim the reduction of the input

domain while determining most errors [21, p. 43]. Criteria
are defined based upon testing techniques which use some
information source to derive test requirements. Finally, test
cases should be defined to satisfy the requirements, defining a
coverage measurement. For instance, source code can be used
to derive requirements regarding control-flow using structural
software testing techniques. In this study, we considered two
criteria:

• All-nodes or statement coverage. Every code block
must be covered by at least one test case [21]. For
structural testing, the application is represented as a
control flow graph, whose nodes represent a sequence of
statements and edges represent changes of flow between
blocks. In this paper, we use only the term “statement
coverage”.

• All-edges or branch coverage. Every edge must be
covered by at least one test case [21]. This criterion
subsumes “All-nodes”, as covering edges requires cov-
ering their source and destination nodes, but usually
provides more test requirements than the former. In
this paper, we use only the term “branch coverage”.

In fact, test criteria are not considered throughout TDD [2],
relying upon developers’ experience to derive test cases. Em-
pirically, adding more test cases reveals errors and improves
the software quality. However, ad hoc test technique increases
the costs of development and can negatively impact the adop-
tion of TDD. Recently, some studies have been conducted to
address this, with promising results [5, 24]. Nonetheless, the
definition and evaluation of test strategies that combine test
techniques, employing a test criterion of increasing strength
within each stage and iteration, must be further investigated.

Moreover, if we are willing to improve education on program-
ming and testing to foster software quality, such strategy
must consider the requirements regarding students, especially
those who are commencing on Computing.
Our approach considers the adoption of test techniques

to derive test cases, guiding students on when and which
test criteria should be applied. Considering the usual TDD
cycle, depicted on Figure 1, we supplemented the refactoring
phase with activities related to the definition of new test
cases, improving the coverage with respect to control-flow
test criteria, step-wisely increasing, after each iteration, the
criterion strength.

Figure 1: Workflow for TDD augmented with test
criteria.

The incremental strength of adopted test criteria not only
fosters quality, but also supports scaffolding, as students
learn simpler test techniques and improve their design and,
after satisfying the test criterion, can use stronger ones.
Thus, such strategy allies incremental quality improvement,
provided by rigorous software testing, with development of
design abilities, which is desirable for students.

3. METHOD
Considering the efficacy of test-driven development in the

academic and enterprise settings, and promising results on
adopting test techniques into TDD [5, 24], we defined a
strategy guided by software test criteria applied to TDD
aimed at undergraduate students. Thus, we proposed a
change to the usual TDD workflow, adding an activity to
create test cases while refactoring. The test set must satisfy
a given coverage with respect to a test criterion, otherwise
the refactoring activity cannot be finished and a new TDD
iteration cannot start.
The research hypothesis is that the quality of the software

using TDD can be improved with the adoption of test
techniques and test criteria. Moreover, we want to evaluate
whether such intervention might impair TDD.
The strategy is targeted toward undergraduate students

with basic programming skill, but who do not practice test-
driven development and are not familiar with software testing.
Our technique, by combining TDD and simple test criteria,
provides a scaffolding approach to develop skills that can
significantly improve the quality of the software developed
by the students, and whose results can endure throughout
their academic and professional life.

444

In this study, we defined a strategy based upon structural
testing and unit testing. We have changed the activities de-
veloped at the refactoring stage: the student should, besides
refactoring, create test cases that cover test requirements
with respect to statement criteria, and, yet in the same it-
eration, reach most requirements for branch coverage. The
group could start a new TDD iteration only when both
coverage thresholds were reached.
The strategy was evaluated with a controlled experi-

ment [22]. We controlled the problem to be solved by the
students (Bowling Game), the programming language (Java),
test framework to be used when defining test cases (JUnit),
the environment for development (Eclipse) and submission
of source code for evaluation. For each subject (student)
of this study, we established its profile, identifying previous
experience on programming, TDD and software testing. The
subjects were organized in two groups:

• “Group A” (control). Subjects that will implement soft-
ware requirements (functionalities) using plain TDD.

• “Group B” (intervention). Subjects that will implement
software requirements using TDD based upon test
criteria. Besides implementing at least one test case for
each functionality, every subject must develop a test
set, in the refactoring stage, that satisfies some test
criteria, as defined in our strategy.

At the beginning of the experiment, every student was
trained on TDD, basic concepts on software testing, and
control-flow test criteria. After training, we evaluated
whether the students correctly understood the concepts and
developed the required abilities on TDD and software testing.
The subjects that succeeded were randomly assigned to

groups A and B. Then, the instructor supplied the description
of the software. Resembling a typical TDD workflow, the
development was organized in iterations. As suggested by
Shelton et al. [24], each iteration comprised of a single
functionality to be implemented. The description of a new
functionality was delivered to the group only after finishing
the current iteration. This approach is similar to a typical
software development environment and conceals information
from future iterations that could be a confounding factor.
Both groups were assigned to the same project and, for

each iteration, they were given the same functionality to
implement. The groups did not know they were using
different TDD strategies, and could not interact with one
another, avoiding influences between groups.
For each iteration and software delivered at its end, we

collected the source code of the application and test cases,
and processed related data, such as date and time of the
end of the iteration. Using these data, we could extract
information considered relevant to analyze TDD experiments:
size of the application and test cases (number of line of codes),
internal quality (statement and branch coverages) [20].

4. RESULTS
Considering the method described in the previous section,

we conducted two experiments with students from a gradu-
ation program on information systems. The first trial took
place on April 2014 with a cohort of four students, and the
second trial was on November 2014 with a cohort of sixteen
students. The organization into groups, training and analysis
of the results are discussed in the following subsections.

4.1 Grouping and training
The subjects of the first trial were four students of the

second-to-last term of the course. Overall, they have similar
grades for Mathematics and Computing courses, easing the
provision of balanced groups. Thus, the subjects were ran-
domly assigned to groups A (control) and B (intervention).
In this trial, training was initiated with video-lectures on

TDD, demonstrating traditional software development, and
development using TDD, highlighting the benefits of the
latter technique. Along the lecture, the instructor developed
an example, which was also implemented by the students.
Afterward, another activity was proposed, exercising the
concepts just learned. Finally, the instructor evaluated the
results of the exercises, which he considered satisfactory.
The subjects of the second trial were sixteen students

of the last term of the course. Differently from the first
trial, instead of a video, the professor taught TDD as usual.
After lecturing, the students were assigned six activities on
TDD, which were evaluated by the instructor. Based on this
evaluation, four students were excluded from the trial, as
their proficiency on TDD was inadequate.

4.2 Activity and intervention
The software developed in both trials was “Bowling

Game” [19], an application commonly used in studies about
TDD [5, 6, 12]. This application is expected to provide the
score of a player in a bowling game using a set of rules
regarding tries and knocked down pins. In our experiment,
we considered a subset of its functionality, organizing it in
three software development iterations:

• First iteration: The game has ten tries and, for each
try, the player can roll the ball twice. Each roll can
achieve at most ten points (number of pins knocked
down). The score should be provided at any moment
of the game (before or after every roll).

• Second iteration: If the player gets ten points in the
first roll of a try, he gets a strike. The player cannot
play the second roll of the try, but the current try will
be awarded the points of the next one.

• Third iteration: The player gets two extra rolls if he
gets a strike on the tenth try. If the player gets a spare
(knock down all pins with two rolls) in the tenth try,
he gets one extra roll.

For each iteration, Group A used traditional TDD and
Group B employed TDD with test criteria to develop the
software, as defined in Figure 1. For our experiment,
Group B created test cases with respect to statements and
branches coverage while in the refactoring stage. Only after
the students noticed they had covered most statements
or branches (in our study, this represents at least a 90%
coverage), the intervention group could start a new iteration.
After each iteration, groups submitted the code to the

instructor through the institution virtual learning environ-
ment. The instructor collected coverage information for each
submission employing Eclemma, extracting data as shown
in Table 1. The name of each group was suffixed with the
trial number to ease the interpretation of the data.

4.3 Analysis
We analyzed the data for internal quality attributes:

number of test cases, and coverage of test requirements.

445

Table 1: Results from experiments.
Iteration 1 Iteration 2 Iteration 3

Statements Branches Test cases Statements Branches Test cases Statements Branches Test cases

Trial 1

Student 01 A1 93.3 54.8 5 96.7 93.3 6 95.4 71.4 7
Student 02 A1 91.2 44.3 2 87.7 43.0 3 88.6 44.4 4
Average A1 92.25 49.55 3.5 92.20 68.15 4.5 92.00 57.90 5.5
Student 09 B1 95.4 78.6 2 82.7 75.0 4 95.1 89.6 6
Student 10 B1 98.7 100.0 2 98.9 100.0 4 98.7 100.0 4
Average B1 97.05 89.30 2.0 90.80 87.50 4.0 96.90 94.80 5.0

Diff. B1 A1 4.85 39.75 -1.5 -1.40 19.35 -0.5 4.90 36.90 -0.5

Trial 2

Student 03 A2 77.8 33.3 1 85.2 66.7 2 82.2 68.8 3
Student 04 A2 93.4 100.0 1 96.4 100.0 2 96.4 100.0 4
Student 05 A2 89.4 62.5 1 79.2 77.8 1 89.0 61.8 1
Student 06 A2 91.1 66.7 4 85.1 66.7 2 89.1 71.4 3
Student 07 A2 80.0 50.0 2 94.9 83.3 7 95.5 83.3 10
Student 08 A2 91.3 75.0 11 92.8 73.1 11 97.1 73.3 12
Average A2 87.17 64.58 3.3 87.17 77.93 4.1 91.55 76.43 5.5
Student 11 B2 89.6 100 1 80.1 100 1 93.6 100 4
Student 12 B2 88.2 100 2 92.9 100 5 87.1 80.6 9
Student 13 B2 93.2 100 3 94.2 100 4 96.9 100 8
Student 14 B2 98.2 90 3 99.4 81.2 3 99.0 88.7 3
Student 15 B2 100 100 3 100 100 4 99.8 88.8 5
Average B2 93.84 98.00 2.4 93.32 96.24 3.4 95.28 91.62 5.8

Diff. B2 A2 6.67 33.42 -0.9 6.15 18.31 -0.7 3.73 15.19 0.3
* Group A is control (traditional TDD) group and Group B is intervention (TDD+Test Criteria) group.

For this study, we considered statement and branch coverage
for test requirements evaluation. Overall, groups using TDD
with test criteria developed test sets with higher coverage
with respect to statements and branches coverage and with
less test cases than groups using traditional TDD.
In Table 1, considering the first trial, we can notice that,

in the first iteration, Group A1 developed on average 3.5 test
cases covering 92.25% statements and 49.55% branches, while
Group B1 developed on average 2 test cases, covering 97.05%
statements and 89.30% branches. For the next iterations,
Group A1 added on average one test case per iteration.
Meanwhile, Group B1 doubled their test set size (although
yet smaller than the one of Group A) and, in the third
iteration, they added just one test case. Concerning coverage
of test requirements on the second and third iteration, Groups
A1 and B1 kept similar averages for statements coverage,
but the same does not apply for branch coverage: Group B1
always kept a higher average than Group A1, on a minimum
of 20% difference.
For the second trial, the difference for statements and

branches coverage was clearer. Group A2 achieved an average
of 64.58% for branch coverage while Group B had 98.00%
using fewer test cases for the first iteration. For statements
coverage, the difference was smaller, but Group B2 still had
a better coverage.
Based on the average checked on Table 2 of the two

groups in the first iteration, group A averaged 3.38 test
cases with 88.44% statement coverage and 60.83% branch
coverage against an average of 2.29 test cases with 94.76%
statement coverage and 95.51% branch coverage. For the

second and third iterations, the difference is smaller, with
both groups developing on average 5 test cases, but yet with
significant difference between coverage of test requirements:
89.75% versus 92.60% regarding statement coverage, and
75.49% versus 93.74% for branch coverage. Indeed, the
difference of statement coverage between groups A and B is
not statistically significant. This result agrees with studies
that evaluate coverage for test cases developed by students
using TDD [11]. However, for branch coverage, the difference
is significant at a level of 0.05 applying Mann-Whitney Test
U (merging data from both trials). Merging data from all
iterations, statement coverage is also statistically significant.
An expected result is the improvement of software quality

due to application of test criteria without impairing TDD,
despite the additional effort to create better test cases and
impact of this activity in the refactoring state. So far, our
results show that test criteria act as a guide to create test
cases, allowing the definition of more consistent test sets
with respect to number of test cases and quality (coverage).
In the short-term, the effort saved by defining fewer test
cases is an interesting result of the technique. On the
longer term, the higher quality of the test set can contribute
to reduce the effort required on specific software testing
activities or enable the usage of more sophisticated test
techniques, considering test criteria with better strength and
comprehensive integration and system testing.
After the experiment, we surveyed the students about the

use of traditional TDD and TDD with test criteria. Overall,
they perceived test cases as an integral part of the software,
which they could not deliver it without implementing the

Table 2: Summary of the results from the experiment.
Statements Branches Test cases

TDD TDD+TC Diff. p-value TDD TDD+TC Diff. p-value TDD TDD+TC Diff. p-value
Iteration 1 88.44 94.76 6.32 0.094 60.83 95.51 34.69 0.006 3.38 2.29 -1.09 1.000
Iteration 2 89.75 92.60 2.85 0.397 75.49 93.74 18.26 0.031 4.25 3.57 -0.68 0.860
Iteration 3 91.66 95.74 4.42 0.189 71.80 92.53 20.73 0.014 5.50 5.57 0.07 0.682
Iter. 1 + 2 + 3 89.95 94.37 3.85 0.007 69.37 93.93 24.56 0.00009 4.38 3.81 -0.57 0.818
* TDD is control (traditional TDD) group and TDD+TC is intervention (TDD+Test Criteria) group.

446

required functionalities and test cases (keeping them all
“green”). With respect to TDD with criteria, the groups
considered satisfying test requirements as much a goal as
satisfying software requirements, i.e., while the requirements
for the iteration are not fulfilled, the software is not ready
for delivery.
Moreover, when questioned about the efficacy of applying

test criteria with TDD, the students asserted the approach
had helped them to better define their test cases and check
which part of the code required further testing. One student,
that had previous experience on TDD, complemented that
he was accustomed to ad hoc techniques to create test cases,
while the current approach provided a better experience,
establishing “guidelines” on writing test cases.

5. THREATS TO VALIDITY
An important threat is the evaluation of whether students

correctly applied TDD. We tried to address this by training
sessions. For instance, on the second trial, we excluded two
students that could not perform TDD as expected after those
training sessions.
The correct application of control-flow test criteria should

be considered when analyzing results. For both trials the
students did not use tools to directly evaluate the coverage
with respect to the criteria in question. Despite this, we
could observe that the coverage data are consistent with
the hypothesis that students considered the statements and
branches criteria when developing test cases. Analyzing the
data, we could notice that coverage did not reach 100%
mostly due to “getters” and “setters” methods created by
the students with automatic assistance of the development
tool, and for which they constantly forgot to design test
cases. Nonetheless, future work should provide the students
tools to address this threat. We are modifying an Eclipse
plugin, based on Eclemma [15], which will compute this
information, and automatically collect and send it for analysis
by the instructor. Furthermore, we will analyze the impact
of code automatically created and verify their impact on test
coverage.
The subjects of our study were students from the last

year of their graduation courses. This reduces the impact of
lack of programming experience, improving the effectiveness
of TDD. Therefore, such population do not have the same
characteristics of those students from introductory computing
classes, who we would also like to evaluate. That is a factor
we must consider when applying the strategy for beginners
(CS1 and CS2 students). The test strategy we adopted in this
study may also require use of different test criteria. Thus,
we are considering to evaluate functional test criteria, such
as equivalence partitioning and boundary value analysis.

6. RELATED WORK
As we have discussed on Section 2, the usual focus of

research related to test-driven development is improvement
of software design, helping programmers to define better
solutions for the scenario to be addressed [1, 2, 10]. Software
testing is not an explicit goal, at least with respect to a test
criterion or test phase.
Even with no explicit goal on software testing, test cases

must be somehow defined. Considering this fact, Shelton et
al. [24] evaluated test cases with respect to mutant analysis
at the end of each development iteration. Their goal was

to increase the quality of the test set after completing
refactoring, enabling the developer to assess the mutation
score and to define new test cases to improve that score.
Another goal was to evaluate the impact of such activity
in the TDD workflow. Their study was conducted along
with three professional programmers, who were proficient
on TDD and use of software testing frameworks. The
results showed improvement at the quality of the test,
discovering more defects after using mutation analysis. The
statement coverage, originally at 91%, reached 100%, and
the mutation score ranged from 40% to 96.9% [24]. Overall,
the programmers were receptive to the novel TDD approach,
stating that the development pace was not affected, and that
they found it easier to refactor code and find defects for the
application with improved test set [24].
Causevic et al. defined a method to improve quality of

software within TDD: TDDHQ (Test-Driven Development
High Quality). Before starting an iteration, a quality
improvement aspect should be chosen. Then the programmer
selects a software testing technique that can contribute
toward satisfying that aspect. At the end of the iteration,
the programmer restarts the workflow, choosing between
implementing a new functionality and improving another
quality aspect [5]. The efficacy of the approach on defect
detection was evaluated with a controlled experiment. Two
students’ groups were organized: one who used TDDHQ and
another that employed traditional TDD. The chosen quality
improvement aspects were functionality and robustness,
which were evaluated with equivalence partitioning test
criterion. The results of the study revealed improvement of
the quality of the test set developed by the TDDHQ group,
showing test cases that had exercised invalid input data (bad-
path) were more effective at finding defects than those that
had considered only valid input (happy-path), as usual in
traditional TDD. However, it was not possible to rebut the
hypothesis that TDDHQ has better results than traditional
TDD to find defects [5].

Differently from those studies, our approach was designed
to help students initiating on Computing. For instance,
Causevic et al. [5] define a flexible model that supports
several quality assurance activities, but they evaluated it
with graduated students (ongoing master’s degree programs).
Shelton et al. [24] adopts mutation analysis, which is a more
sophisticated software testing technique, requiring more effort
from the student to grasp the rationale for detection of defects
and the development of reflection in action.

7. CONCLUSIONS
The hypothesis we have evaluated was whether the ap-

plication of test criteria to test-driven development could
improve the quality of software developed by students, and
foster reflection in action. The development of test cases, by
itself, contributes toward this, but, in our study, we could
observe that the use of test criteria improved the quality
of the test set without significant disturbance to the TDD
workflow.
Likewise, in related studies the experiment was rather

short, comprising just three iterations. Longer term effect of
the approach should be evaluated, employing more iterations
and measuring the effort for developing test cases using ad
hoc, structural or another testing technique. Considering
test criteria, can we observe the saturation effect regarding
coverage and use such information to employ criterion with

447

greater strength than control-flow ones, and, if so, can
students cope with such criteria? Another question is whether
there are other improvements besides test set quality with
respect to coverage. For instance, can the usage of TDD
with criteria contribute to even better design than traditional
TDD? Does the effort for improved testing alleviate the effort
for testing the software?
Our next step comprises of further evaluation of the current

strategy for longer iterations, and applying functional test
criteria. We will also focus on students from introductory
computing courses, and evaluate more students (cohorts of
up to 40 students), reducing bias concerning profiles and
enabling the proper statistical evaluation of our hypothesis.

8. REFERENCES
[1] M. F. Aniche and M. A. Gerosa. How the practice of

TDD influences class design in object-oriented systems:
Patterns of unit tests feedback. In 26th Brazilian
Symposium on Software Engineering, pages 1–10, 2012.

[2] K. Beck. Test-Driven Development: By Example.
Addison-Wesley Professional, USA, 1 edition, Nov.
2002.

[3] K. Buffardi and S. H. Edwards. Exploring influences on
student adherence to test-driven development. In 17th
Conference on Innovation and Technology in Computer
Science Education, pages 105–110, 2012.

[4] K. Buffardi and S. H. Edwards. Effective and ineffective
software testing behaviors by novice programmers. In
9th Conference on International Computing Education
Research, pages 83–90, New York, NY,USA, 2013.

[5] A. Causevic, S. Punnekkat, and D. Sundmark.
T DDHQ: Achieving higher quality testing in test
driven development. In 39th Euromicro Conference
Series on Software Engineering and Advanced
Applications, pages 33–36, 2013.

[6] A. Causevic, R. Shukla, S. Punnekkat, and
D. Sundmark. Effects of negative testing on TDD: An
industrial experiment. In 14th Conference on Agile
Software Development, pages 91–105, 2013.

[7] A. Causevic, D. Sundmark, and S. Punnekkat. Impact
of test design technique knowledge on test driven
development: A controlled experiment. In 13th
Conference on Agile Software Development, pages
138–152, 2012.

[8] D. M. de Souza, S. Isotani, and E. F. Barbosa.
Teaching novice programmers using ProgTest.
International Journal of Knowledge and Learning,
10(1):60–77, 2015.

[9] S. H. Edwards. Rethinking computer science education
from a test-first perspective. In 18th Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, pages 148–155, New York, NY, USA,
2003. ACM.

[10] S. H. Edwards. Using software testing to move students
from trial-and-error to reflection-in-action. In 35th
Technical Symposium on Computer Science Education,
pages 26–30, New York, NY,USA, 2004.

[11] S. H. Edwards and Z. Shams. Do student programmers
all tend to write the same software tests? In 19th
Conference on Innovation and Technology in Computer
Science Education, pages 171–176, New York, NY,USA,
2014.

[12] D. Fucci and B. Turhan. On the role of tests in
test-driven development: A differentiated and partial
replication. Empirical Software Engineering,
19(2):277–302, Apr. 2014.

[13] B. George and L. Williams. A structured experiment of
test-driven development. Information and Software
Technology, 46(5):337–342, Apr. 2004.

[14] M. Hilton and D. S. Janzen. On teaching arrays with
test-driven learning in WebIDE. In 17th Conference on
Innovation and Technology in Computer Science
Education, pages 93–98, 2012.

[15] M. R. Hoffmann et al. EclEmma - Java code coverage
for Eclipse. Software, Aug. 2006.

[16] V. Isomöttönen and V. Lappalainen. CSI with games
and an emphasis on TDD and unit testing: piling a
trend upon a trend. Inroads, 3(3):62–68, Sept. 2012.

[17] D. Janzen and H. Saiedian. Test-driven learning in
early programming courses. In 39th Technical
Symposium on Computer Science Education, pages
532–536, 2008.

[18] D. S. Janzen and H. Saiedian. Test-driven learning:
intrinsic integration of testing into the CS/SE
curriculum. In 37th Technical Symposium on Computer
Science Education, pages 254–258, 2006.

[19] R. C. Martin. The Bowling Game Kata. Site:
http://butunclebob.com/ArticleS.UncleBob.
TheBowlingGameKata, 2005.

[20] H. Munir, M. Moayyed, and K. Petersen. Considering
rigor and relevance when evaluating test driven
development: A systematic review. Information and
Software Technology, 56(4):375–394, Apr. 2014.

[21] G. J. Myers. The Art of Software Testing. John Wiley
& Sons, New York, NY,USA, 2 edition, 2004.

[22] S. L. Pfleeger. Design and analysis in software
engineering: the language of case studies and formal
experiments. Software Engineering Notes, 19(4):16–20,
Oct. 1994.

[23] S. Schaub. Teaching CS1 with web applications and
test-driven development. Inroads, 41(2):113–117, June
2009.

[24] W. Shelton, N. Li, P. Ammann, and J. Offutt. Adding
criteria-based tests to test driven development. In 5th
International Conference on Software Testing,
Verification and Validation, pages 878–886, 2012.

[25] D. M. d. Souza, J. C. Maldonado, and E. F. Barbosa.
ProgTest: An environment for the submission and
evaluation of programming assignments based on
testing activities. In 24th Conference on Software
Engineering Education and Training, pages 1–10, 2011.

[26] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K.
Hollingsworth, and N. Padua-Perez. Experiences with
Marmoset: designing and using an advanced
submission and testing system for programming
courses. In 11th Conference on Innovation and
Technology in Computer Science Education, pages
13–17, New York, NY,USA, 2006.

[27] M. Thornton, S. H. Edwards, R. P. Tan, and M. A.
Pérez-Quiñones. Supporting student-written tests of
GUI programs. In 39th Technical Symposium on
Computer Science Education, pages 537–541, 2008.

448

